Objective domains	出題範囲(参考
1. AI Problem Definition	1. AI 問題の定義
1.1 Identify the problem we are trying to solve using AI (e.g., user segmentation,	1.1 AIを使用して解決しようとしている問題の特定(例:ユー
improving customer service)Identify the need that will be addressed	 ・ 対応するべきニーズを特定する
 Find out what information comes in and what output is expected 	 ・ 入力される情報と、適切な出力について調査する
Prind out what mormation comes in and what output is expected Determine whether AI is called for	
	 AIが必要かどうかを判断する 状況に応じたAIのプラス面とマイナス面を検討する
 Consider upsides and downsides of AI in the situation Define measurable success 	
	 測定可能な成功の基準を定義する プロジェクレビ影響を受けることが思想を見た。
Benchmark against domain or organization-specific risks to which the project may be susceptible	 ・プロジェクトが影響を受ける可能性のある分野または組織固有
1.2 Classify the problem (e.g., regression, unsupervised learning)	1.2 問題の分類(例:回帰、教師なし学習)
• Examine available data (labeled or unlabeled?) and the problem	•利用可能なデータ(ラベルあり、ラベルなし)と問題点を調査
Determine problem type (e.g., classifier, regression, unsupervised, reinforcement)	 問題の種類を決定する(例:分類器、回帰、教師なし、強化な
1.3 Identify the areas of expertise needed to solve the problem	1.3 問題解決に必要な専門領域の特定
Identify business expertise required	• 必要なビジネスの専門知識を特定する
 Identify need for domain (subject-matter) expertise on the problem 	• 問題に関わる領域(対象分野)の専門知識の必要性を特定する
Identify AI expertise needed	• 必要なAIの専門知識を特定する
Identify implementation expertise needed	• 必要な実装の専門知識を特定する
1.4 Build a security plan	1.4 セキュリティ計画の策定
Consider internal access levels or permissions	• 内部のアクセスレベルやアクセス許可を検討 する
Consider infrastructure security	• インフラストラクチャのセキュリティについて検討する
• Assess the risk of using a certain model or potential attack surfaces (e.g., adversarial attacks on real-	•特定のモデルを使用するリスクや潜在的な攻撃対象領域を評価
time learning model)	ど)
1.5 Ensure that AI is used appropriately	1.5 適切なAIの活用
Identify potential ways that the AI can mispredict or harm specific user groups	• AI がどのように予測を誤ったり特定のユーザーグループに損害
 Set guidelines for data gathering and use 	• データの収集と使用に関するガイドラインを設定する
 Set guidelines for algorithm selection from user perspective 	• ユーザー視点に立ったアルゴリズム選択のガイドラインを設定
 Consider how the subject of the data can interpret the results 	• データの対象者がどのように結果を解釈できるかを検討する
Consider out-of-context use of AI results	● 文脈を無視したAI結果の使用について検討する
1.6 Choose transparency and validation activities	1.6 透明性の確保と検証のための作業の選択
Communicate intended purpose of data collection	• データ収集の目的を伝える
Decide who should see the results	• 結果を見るべき人を決定する
Review legal requirements specific to the industry with the problem being solved	• 問題解決にあたり業界固有の法的要件を確認する

参家)

ーザーのセグメント化、顧客サービスの向上など)

有のリスクに対するベンチマークを行う

査する など)

る

価する(例:リアルタイム学習モデルへの敵対的な攻撃な

書を与えたりする可能性があるかを特定する

定する

Objective domains	出題範囲(参
2. Data Collection, Processing and Engineering	2. データ収集、処理、エンジニアリング
2.1 Choose the way to collect data	2.1 データの収集方法の選択
Determine type/characteristics of data needed	• 必要なデータの種類と特徴量を決定する
 Decide if there is an existing data set or if you need to generate your own 	• 既存のデータセットがあるのか、独自にデータセットを作成す
• When generating your own dataset, decide whether collection can be automated or requires user input	• データセットを独自に作成する場合、収集を自動化できるか、
2.2 Assess data quality	2.2 データ品質の評価
Determine if dataset meets needs of task	 データセットがタスクのニーズを満たしているかどうかを判断
Look for missing or corrupt data elements	• データ要素に欠落や破損がないかを確認する
2.3 Ensure that data are representative	2.3 データの代表性の確保
Examine collection techniques for potential sources of bias	• バイアスの原因となり得る収集方法について確認する
 Make sure the amount of data is enough to build an unbiased model 	 偏りのないモデルを構築するために十分なデータ量であること
2.4 Identify resource requirements (e.g., computing, time complexity)	2.4 必要なリソースの特定(例:コンピューティング、時間計
 Assess whether problem is solvable with available computing resources 	• 利用可能なコンピューティングリソースで問題が解決可能かど
 Consider the budget of the project and resources that are available 	• プロジェクトの予算と利用可能なリソースを検討する
2.5 Convert data into suitable formats (e.g., numerical, image, time series)	2.5 適切な形式へのデータ変換(数値、画像、時系列など)
Convert data to binary (e.g., images become pixels)	● データを2進法に変換する(例:画像をピクセルにする)
 Convert computer data into features suitable for AI (e.g., sentences become tokens) 	 コンピューターのデータをAIに適した特徴量に変換する(例:
2.6 Select features for the AI model	2.6 AIモデルの特徴量選択
Determine which features of data to include	• データのどの特徴量を含めるべきかを決定する
Build initial feature vectors for test/train dataset	 テスト用/トレーニング用データセット向けの初期特徴量ベクト
 Consult with subject-matter experts to confirm feature selection 	• 対象分野の専門家に相談して、選択する特徴量を確認する
2.7 Engage in feature engineering	2.7 特徴量エンジニアニングの実施
 Review features and determine what standard transformations are needed 	 特徴量を確認して、どのような標準的な変換処理が必要かを判
Create processed datasets	• 加工されたデータセットを作成する
2.8 Identify training and test data sets	2.8 トレーニング用とテスト用のデータセットの識別
 Separate available data into training and test sets 	• 利用可能なデータをトレーニング用とテスト用に仕分ける
Ensure test set is representative	• テストセットの代表性を確認する
2.9 Document data decisions	2.9 データに関する決定事項の文書化
• List assumptions, predicates, and constraints upon which design choices have been reasoned	• 仕様選択の理由となった前提条件、根拠、制約条件をリスト化
Make this information available to regulators and end users who demand deep transparency	 高い透明性を求める規制当局やエンドユーザーがこれらの情報

参考訳)

する必要があるのかを判断する

ユーザーによる入力が必要かを判断する

断する

とを確認する

計算量)

どうかを評価 する

」: 文章をトークンにする)

7トルを作成する

判断する

化する 報を利用できるようにする

IT Specialist Artificial Intelligence 人工知能

Objective domains	出題範囲(参
3. AI Algorithms and Models	3. AI アルゴリズムとモデル
3.1 Consider applicability of specific algorithms	3.1 特定のアルゴリズムの適用性の検討
Evaluate AI algorithm families	• AI アルゴリズム群を評価する
• Decide which algorithms are suitable, e.g., neural network, classification (like decision tree, k means)	• ニューラルネットワーク、分類(決定木、k平均法など)など、
3.2 Train a model using the selected algorithm	3.2 選択したアルゴリズムによるモデルのトレーニング
 Train model for an algorithm with best-guess starting parameters 	 最適と推測される開始パラメーターをもつアルゴリズムでモデ
• Tune the model by changing parameters	• パラメータを変更してモデルをチューニングする
Gather performance metrics for the model	• モデルのパフォーマンス評価指標(メトリック)を収集する
• Iterate as needed	● 必要に応じて反復する
3.3 Select specific model after experimentation, avoiding overengineering	3.3 オーバーエンジニアリングを避けての、実験後の特定モデ
Consider cost, speed, and other factors in evaluating models	 コストや処理速度、他の要素を考慮してモデルを評価する
 Determine whether selected model meets explainability requirements 	• 選択されたモデルが説明可能性の要件を満たしているかどうか
3.4 Tell data stories	3.4 データからわかることの説明
Where feasible, create visualizations of the results	• 可能な場合に結果を視覚化する
Look for trends	• トレンドを探す
 Verify that the visualization is useful for making a decision 	• 視覚化が意思決定に役立つかを確認する
3.5 Evaluate model performance (e.g., accuracy, precision)	3.5 モデルの性能評価(例:精度、適合率など)
Check for overfitting, underfitting	• 過剰適合、過少適合をチェックする
Generate metrics or KPIs	• メトリックやKPIを作成する
 Introduce new test data to cross-validate robustness, testing how model handles unforeseen data 	• 新しいテストデータを導入して堅牢性を交差検証し、モデルが
3.6 Look for potential sources of bias in the algorithm	3.6 アルゴリズムにバイアスがかかっている可能性の検証
Verify that inputs resemble training data	 入力データがトレーニング用データに似ていることを確認する
• Confirm that training data do not contain irrelevant correlations we do not want classifier to rely on	 トレーニング用データに、分類器に依存させたくない無関係な
Check for imbalances in data	• データの不均衡をチェックする
 Guard against creating self-fulfilling prophecies based upon historical biases 	• 過去のバイアスに基づく自己達成的予言を防ぐ
 Check the explainability of the algorithm (e.g., feature importance in decision trees) 	• アルゴリズムの説明可能性をチェックする(例:決定木におけ
3.7 Evaluate model sensitivity	3.7 モデルの感度の評価
Test for sensitivity of model	 モデルの感度をテストする
Test for specificity of model	 モデルの特異度をテストする
3.8 Confirm adherence to regulatory requirements, if any	3.8 規制要件がある場合の適合状況の確認
 Evaluate outputs according to thresholds defined in requirements 	 要件で定義されたしきい値に基づいて出力を評価する
Document results	● 結果を文書化する
3.9 Obtain stakeholder approval	3.9 利害関係者の承認を得る
Collect results and benchmark risks	 結果を収集し、リスクをベンチマークする
Hold sessions to evaluate solution	• ソリューションを評価するための検討会をもつ

参考訳)

ど、どのアルゴリズムが適しているかを決定する

Eデルをトレーニングする

デルの選択

うかを判断する

レが予期せぬデータをどのように処理するかをテストする

る

系な相関関係が含まれていないことを確認する

らける特徴量の重要性など)

Objective domains	出題範囲(参考
4. Application Integration and Deployment	4. アプリケーションの統合と展開
4.1 Train customers on how to use product and what to expect from it	4.1 製品の使用方法やできることついての顧客のトレーニング
Inform users of model limitations	 モデルの制約をユーザーに伝える
Inform users of intended model usage	• モデルの使用目的をユーザーに伝える
Share documentation	• 付随資料を共有する
Manage customer expectations	• 顧客の要望に応える
4.2 Plan to address potential challenges of models in production	4.2 運用中のモデルの潜在的問題に対処するための計画立案
 Understand the types of challenges you are likely to encounter 	• 遭遇する可能性のある問題の種類を理解する
Understand the indicators of challenges	● 問題に関わる指標を理解する
 Understand how each type of challenge could be mitigated 	• 各種類の問題をどのように軽減できるかを理解する
4.3 Design a production pipeline, including application integration	4.3 アプリケーションの統合を含む、開発パイプラインの設計
• Create a pipeline (training, prediction) that can meet the product needs (may be different from the	 製品のニーズに対応できるパイプライン(学習、予測)を構築
experiment)	
 Find the solution that works with the existing data stores and connects to the application 	 アプリケーションに接続して既存の蓄積データが利用できるソリ
 Build the connection between the AI and the application 	● AIとアプリケーションの接続を構築する
Build mechanism to gather user feedback	 ユーザーのフィードバックを集める仕組みを構築する
Test accuracy of AI through application	 ● AIの精度をアプリケーションでテストする
• Test robustness of AI	• AIの堅牢性をテストする
• Test speed of AI	• AIの処理速度をテストする
 Test application to fit size of use case (e.g., in AI for mobile applications) 	 使用事例の規模に合わせてアプリケーションをテストする(例)
4.4 Support the AI solution	4.4 AIソリューションのサポート
• Document the functions within the AI solution to allow for maintenance (updates, fixing bugs, handling	 AIソリューション内の機能を文書化してメンテナンス(アップ・
edge cases)	
Train a support team	• サポートチームのトレーニングを行う
Implement a feedback mechanism	• フィードバックの仕組みを実装する
Implement drift detector	• ドリフト検知機能を実装する
Implement ways to gather new data	● 新たなデータの収集方法を実装する

参考訳)

Ï

ŀ

築する(実験とは異なる場合がある)

ソリューションを見つける

例:モバイルアプリケーション用のAIの場合)

プデート、バグの修正、エッジケースの処理)を可能にする

Objective domains	出版範囲(参考
5. Maintaining and Monitoring AI in Production	5. 運用環境における AI の保守と監視
5.1 Engage in oversight	5.1 監視の実施
• Log application and model performance to facilitate security, debug, accountability, and audit	 アプリケーションやモデルのパフォーマンスをログに記録し、⁻
	3
Use robust monitoring systems	● 強固な監視システムを使用する
Act upon alerts	• アラートに対応する
Observe the system over time in a variety of contexts to check for drift or degraded modes of operation	 システムを様々な状況で長期的に観察し、ドリフトや精度が低い
 Detect any way system fails to support new information 	• システムが新しい情報に対応できない状態を検知する
5.2 Assess business impact (key performance indicators)	5.2 ビジネスへの影響の評価(重要業績評価指標:KPI)
Track impact metrics to determine whether solution has solved the problem	 ソリューションが問題解決できたかどうかを判断するために、
 Compare previous metrics with new metrics when changes are made 	• 変更時に以前のメトリックスと新しいメトリックスを比較する
 Act on unexpected metrics by finding problem and fixing it 	• 問題を発見し修正することで想定外のメトリックスに対応する
5.3 Measure impacts on individuals and communities	5.3 個人やコミュニティへの影響の測定
Analyze impact on specific subgroups	• 特定のサブグループへの影響を分析する
Identify and mitigate issues	• 問題を特定して影響を軽減する
Identify opportunities for optimization	• 最適化の機会を特定する
5.4 Handle feedback from users	5.4 ユーザーからのフィードバックへの対応
Measure user satisfaction	• ユーザーの満足度を測定する
• Assess whether users are confused (e.g., do they understand what the AI is supposed to do for them?)	• ユーザーが混乱していないかどうかを評価する(例:AIが何を
Incorporate feedback into future versions	• フィードバックを次のバージョンに反映する
5.5 Consider improvement or decommission on a regular basis	5.5 定期的な改善または廃止の検討
Combine impact observations (e.g., business, community, technology trends) to assess AI value	 インパクトの観測結果(ビジネス、コミュニティ、テクノロジー
• Decide whether to retrain AI, continue to use AI as is, or to decommission AI	• AIを再トレーニングするのか、継続使用するのか、または廃止

考訳)

セキュリティの確保、デバッグ、説明責任、監査を促進す

低下している動作モードをチェックする

、インパクト測定のためのメトリックスをトラッキングする る る

をしてくれるべきものかを理解しているか)

ジーの動向など)を組み合わせて AI の価値を評価する 止するのかを決める